banner



















































































































































































































Příklady využití konstruktivistických teorií ve výzkumných projektech zaměřených na přírodovědné vzdělávání


Praktickou realizací projektu výuky chemie metodou aktivní konstrukce poznání (AKP) se u nás zabývali především na katedře chemie Pedagogické fakulty UJEP v Ústí nad Labem (např. Pečivová a Škoda, 2001, Doulík, 2004 aj.). S využitím této metody a se zvláštním důrazem na využití vizualizace bylo zpracováno několik desítek kompletních příprav na vyučovací hodiny chemie pro 8. a 9. ročník základní školy. Jednalo se zejména o tematické celky Kyseliny a zásady, Redoxní děje a Základní organické sloučeniny. V přípravách byla dodržována jednotná základní strukturace: téma výuky, nový poznatek, výchozí pojmy, konkrétní vzdělávací cíle, grafická struktura nového poznatku, slovní vyjádření struktury nového poznatku, zopakování vstupních pojmů, pracovní materiál a prováděcí pokyny, pomocí nichž budou žáci konstruovat strukturu nového poznatku (tří- a dvourozměrné prameny), poznání vyplývající z pozorování, orientační pokyny navozující tzv. metakognici pozorování, srovnávání (jeho realizace a metakognice), zobecnění a aplikace vytvořených poznatků. V této struktuře vyučovacích hodin se nabízely široké možnosti využití vizualizace. Vizualizovány byly např. grafická struktura tvorby nového poznatku, zopakování vstupních pojmů, prameny poznání, ať už tří- nebo dvourozměrné aj.. Poznání vyplývající z pozorování bylo také podporováno vizualizací použitím symbolů, tabulek, zakreslováním aparatur, schémat, obrázků atd.
Z výsledků provedených výzkumů jednoznačně vyplynula potřeba vizualizačního materiálu jako nedílné součásti výuky chemie konstruktivistickými metodami. Žákům je tak poskytována rozmanitá a přitom komplexní informace, která napomáhá utváření a preferenci žádoucího hloubkového učebního stylu žáků (Mullerová, Škoda, Šikulová, 2000).
Zkušenostním přírodovědným učením, které nabízí přímo v přírodě množství hodnotných podnětů, vzbuzujících přirozenou potřebu po poznaní, se zabývají např. K. Žoldošová a P. Prokop z Trnavy. Každý z nás vnímá svět svým vlastním způsobem, ale to neznamená, že všechny individuální výklady světa jsou správné. V přírodních vědách se v každém období preferují určité teorie, paradigmata, které zastřešují nejnovější poznatky o vysvětlování přírodních zákonitostí. Ke studiu vlivu zkušenostního učení v terénu použili K. Žoldošová a P. Prokop metodu kresby, která dokáže ve velké míře objasnit názory, některé postoje respondentů, a též charakter jejich znalostí (Backett - Milburn, McKie, 1999). Hlavní výhodou je volnost ve vyjádření představ a názorů. Úkolem žáků bylo nakreslit do předkreslené šablony představu ideálního prostředí pro přírodovědné vzdělávání. Při vyhodnocování kreseb bylo vytvořeno 7 kategorií zakreslovaných prvků (Žoldošová a Prokop, 2002):
1. Příroda - zakreslení přemístění školy nebo její části do přírody nebo přírody ve školní třídě (zvířata, živé koutky apod.).
2. Laboratoř - umístění laboratoře (chemické nebo biologické) do třídy nebo mimo ni.
3. Počítače - zkoumání preferencí počítačů před přírodovědným bádáním.
4. Netradiční uspořádání třídy - změny tradičního uspořádání třídy.
5. Sport - druhy sportovišť přímo ve třídě nebo v jejím okolí.
6. Odpočinek - prvky sloužící žákům k odpočinku.
7. Agresivita - prvky agresivního chování k učiteli a spolužákům.
Shromážděna byla data z experimentálních (výuka v terénu) a kontrolních (tradiční výuka ve třídě) skupin. Ve všech definovaných kategoriích s výjimkou kategorie "agresivita" byly zjištěny signifikantní vyšší frekvence výskytu prvků v experimentální skupině respondentů. Navíc byly kresby respondentů z experimentálních skupin bohatší, tj. obsahovaly víc a různorodějších prvků. Zkušenostní učení realizované v terénu s využitím experimentálních a pozorovacích pomůcek působí na žáky vysoce motivačně a aktivačně. Prvky výuky v terénu pak ve významné míře ovlivňují představy žáků o ideální třídě pro přírodovědné vzdělávání.
Obsáhlou diagnostikou prekonceptů přírodovědných pojmů se u nás zabývali zejména P. Doulík a J. Škoda z Ústí nad Labem. Navrhli a ověřili baterii vlastních výzkumných nástrojů, které byly dimenzovány pro univerzální použití v rozsahu pro 3. - 9. ročník základních škol pro diagnostiku prekonceptů pojmů droga, energie, hoření, hustota, jed, kyselina, plast, radioaktivita, vápno a vzduch. Součástí baterie výzkumných nástrojů byly: kognitivní test - sloužící k diagnostice kognitivní dimenze prekonceptů, pro každý z diagnostikovaných prekonceptů byla vytvořena jedna aplikační úloha; posuzovací škály - byly vytvořeny pro diagnostiku vztahové a významové roviny afektivní dimenze; zastrukturovací schémata - zjednodušené pojmové mapy určené pro diagnostiku zastrukturování a určování tzv. plasticity, jako čtvrté základní popisné kategorie, která byla určována jako longitudinální průřezová diference mezi dvěma hodnotami jednotlivých popisných kategorií. Analýzy výsledků potvrdily hypotézu, že v průběhu cílené výuky na základních školách dochází ke statisticky významnému nárůstu úrovně kognitivní dimenze jednotlivých prekonceptů. Nárůst však je pozvolný a pouze v případě některých prekonceptů dochází ke statisticky významnému nárůstu mezi sousedními diagnostikovanými ročníky. Nelze však již jednoznačně určit, zda nárůst úrovně kognitivní dimenze prekonceptů je výsledek záměrné výuky, či zda se na něm podílejí i mimoškolní vlivy a jakou měrou. U vlivu výuky lze uvažovat v případech, kdy nárůst úrovně kognitivní dimenze odpovídá výuce příslušného tématu v určitém ročníku.
Předpoklad o nárůstu úrovně vztahové roviny afektivní dimenze v průběhu výuky žáků na ZŠ se ve většině případů nepotvrdil. Ke změnám úrovně této popisné kategorie prekonceptů dochází zejména u pojmů se zvýšeným emocionálním akcentem, jako jsou droga a jed. U většiny prekonceptů zůstává však úroveň vztahové roviny afektivní dimenze neměnná, což může mít příčinu v nedostatečné pozornosti, která se při výuce věnuje afektivním cílům. Potvrdila se naopak hypotéza, že v průběhu výuky na základní škole dochází ke statisticky významnému nárůstu úrovně významové roviny afektivní dimenze. Nárůst významové roviny afektivní dimenze tedy souvisí s nárůstem kognitivní dimenze v průběhu výuky na ZŠ. V jejím rámci se žákům prezentuje i praktické využití daných pojmů, čímž se utváří povědomí žáků o významu pojmů. U některých prekonceptů (radioaktivita, droga, kyselina) dochází k výraznému nárůstu významové roviny afektivní dimenze oproti vztahové rovině afektivní dimenze. Toto je zvláště patrné u prekonceptu pojmu radioaktivita. Vztah k tomuto pojmu se v průběhu výuky vůbec nemění a zůstává záporný, zatímco úroveň významové roviny afektivní dimenze se postupně zvyšuje (žáci začínají chápat význam radioaktivity).
Předpoklad o nárůstu úrovně zastrukturování v průběhu výuky na ZŠ se potvrdil. Jedná se však opět o pozvolný nárůst, který je patrný zejména mezi 3. - 9. ročníkem. Postupně se zvyšující úroveň zastrukturování je patrná i z výrazného poklesu volby tzv. "nulového schématu" (schéma bez uvedených pojmů, které žáci volili v případě, kdy daný prekoncept pojmu neznali, případně neuměli jeho zastrukturování posoudit). Zajímavé výsledky autorů výzkumu měly další potvrzující pokračování i v širším výzkumném vzorku (Doulík, 2004).
Piagetovou konstruktivistickou teorií a jejím uplatněním ve výuce chemie se zabývá M. Nodzyńská z Pedagogické akademie v Krakově (např. Nodzyńska, 2002). Vychází z tradičního pozitivního hodnocení Piagetova přínosu, především jeho teorie lidského vývoje, ovšem s problematickou aplikací závěrů jeho výzkumu v jiných disciplínách než v matematice a mateřském jazyce, tj. oblastí, pro něž Piaget stanovil relativně přesné zásady, které by se měly odrážet v osnovách vyučování (Piaget, 1977). Jde o tzv. konstruktivistická pravidla (principy konstruktivismu), která zpravidla nejsou uplatňována při psaní školních učebnic a tvorbě učebního obsahu. Pro výuku matematiky se jedná o následující: psychické struktury žáků by měly být patřičně vyvinuty před zavedením "numerických problémů", což znamená, že v počáteční etapě výuky by žáci řešili "otázky běžného života", které by až následně doplňovali numerickým popisem skutečnosti; psychické struktury dětí musí být dostatečně vyvinuty dříve než se zavede formální symbolismus, což znamená, že v počáteční etapě výuky by měl převažovat slovní popis, postupně doplňován a nahrazován symboly; pokud dítě nechápe "logiku" vědního obsahu, nemělo by se trvat na jeho "pouhém" zapamatování; děti mají mít příležitost k vytváření (konstruování) matematických souvislostí a to nejen k využívání hotových vzorců lidského myšlení (problémové úlohy); učitelé musí rozumět chybám, které žáci dělají; během výuky se má vytvářet ovzduší, které podporuje samostatné myšlení - učitel by měl mít přípravu nejen odbornou, ale také dostatečnou přípravu pedagogickou a psychologickou.
Analogická doporučení formuloval Piaget pro výuku mateřského jazyka: čtení, psaní a pravopis tvoří celek, musí se jim učit dohromady; v počáteční etapě vyučování se nemají zavádět stejná slova pro různé předměty; výuka čtení je proces konstrukce, pro kterou dítě musí dosáhnout určitého stupně psychického vývoje; slova ve slabikáři musí být dítěti dobře známá; žáci mají být motivovaní k výuce.
Na základě těchto podrobných doporučení pro matematiku a mateřský jazyk se M. Nodzyńská pokouší navrhnout analogická pravidla pro počáteční výuku chemie: psychické struktury žáků by měly být patřičně vyvinuty před zavedením numerických problémů, což znamená, že v počáteční etapě výuky chemie by měl být základem kvalitativní popis změn a kvantitativní vysvětlení by bylo až jejich doplněním; psychické struktury dětí musí být dostatečně vyvinuty, než se zavede formální symbolismus, což znamená, že v počáteční etapě výuky mají být chemické symboly a rovnice pro chemické reakce doprovázeny slovním doplněním; pokud dítě nechápe logiku vědního obsahu, nemělo by se trvat na jeho zapamatování, v souladu s čímž by se měly při zavádění chemických teorií uplatňovat příklady z každodenního života a srovnání; žáci musí mít příležitost k vlastnímu odhalování (konstruování) matematických souvislostí v chemii a proto by měl učitel poukazovat na situace známé dětem z každodenního života a na přirozené matematické struktury existující v dětském vědomí (z tohoto důvodu je možné poměrně rychle řešit úkoly pomocí úměry místo jiných matematických vzorců); učitelé musí rozumět charakteru chyb, které dělají žáci; název chemické sloučeniny, její sumární a strukturní vzorce musí tvořit celek a mají být zaváděny současně; v chemii odpovídá systematickému názvu jedné sloučeniny poměrně značné množství různých grafických symbolů: sumární, strukturní, racionální vzorce, proto je třeba dbát na to, aby byly kresleny vždy stejným způsobem a v téže prostorové orientaci; slova používaná ve výuce musí být dítěti známá, proto se v počáteční etapě vysvětlování teorií a zavádění nových pojmů z chemie mají používat termíny žákům známé; během výuky je třeba vytvořit takové klima, které podporuje samostatné myšlení, žáci mají být motivováni k učení. V přístupech mnoha učitelů chemie, jejichž názory a vedení výuky M. Nodzyńská zkoumala, bohužel chybí soustředění na autonomní myšlení dítěte a na jeho samostatné konstruování pojmů, ale pozornost je v největší míře věnována translaci těchto pojmů přímo k žákům. To vede následně k mechanickému reprodukování správných odpovědí na otázky. Mnoho učitelů chce po dětech, aby si pamatovaly standardní algoritmy a hotové vzorce, čímž potlačují vlastní žákovo myšlení. Jde tak o výuku, která není v souladu s aktuální psychickou strukturou dítěte.
Jedním z ústředních cílů projektu konstruktivisticky orientovaného integrovaného vyučování přírodních věd na základní škole "Projekt integrovaného vyučování přírodních věd pro základní školu (včetně inovace přípravy učitelů)", který byl v letech 2002 - 2005 řešen na Pedagogické fakultě Trnavské univerzity pod vedením prof. Ľ. Helda, je zvrátit zdeformovaný postup tvorby standardů pro primární přírodovědné vzdělávání na základě stávajících osnov. Jde o pokus revize standardu přírodovědného vzdělání pro absolventy základní školy s vytvořením návrhu integrovaného přírodovědného kurikula a vzorových vzdělávacích aktivit pro žáky základních škol. Ústřední snahou projektu je nalézt optimální modely přechodu z transmisívního přístupu k výuce na přístup konstruktivistický, který spočívá také v přímé inkorporaci vědeckých postupů přímo do vyučovacího procesu. To znamená, že učitel žákům neposkytuje hotové poznatky, ale tvorba pojmů se uskutečňuje v procesu jejich reálné experimentální činnosti. Znalosti žáků se tedy konstruují v rámci činností, na základe vlastních zkušeností. Inspirací zmiňovaného projektu jsou např. model výuky realizovaný v americkém programu FAST či francouzský projekt "La main ? la pâte" - "Vezměme věci do rukou", které také vycházejí z konstruktivistických principů. V projektu jsou podobně vytvářeny, realizovány a evaluovány různé pedagogické situace aplikující vědecké metody poznávání a většinou integrovaně postihující učivo biologie, chemie a fyziky (Urbanová a Orolínová, 2004, Held a Orolínová, 2004).
Obšírný výzkum žákova pojetí přírodovědných fenoménů cituje J. Škoda v nové publikaci o výzkumu dětských pojetí přírodovědných fenoménů P. Doulíka: Geneze dětských pojetí vybraných fenoménů (Škoda in Doulík, 2005). Jde o strukturní charakteristiku žákova pojetí přírodovědných fenoménů, kterou zpracoval X. Liu. Liu vymezuje žákovo pojetí přírodovědných fenoménů pomocí tří charakteristik - vnější úroveň (external horizon), vnitřní úroveň (internal horizon) a interakce mezi vnější a vnitřní úrovní žákova pojetí. Zajímavá je v tomto výzkumu i použitá metoda nazvaná diagraf. Jde o variaci konceptuálních map, vyhodnocovaných do tzv. systémově-strukturálních úrovní - clusterů. Autor se tímto způsobem zaměřil na podrobné rozpracování tří fenoménů - teplo, světlo a gravitace. Závěry z výzkumů poukazují jednak na nutnost longitudinálních výzkumů a také na potřebu zaměření se v učitelské praxi na posouvání žákovských pojetí od primitivních představ k vědeckým pojmům.
Podobné závěry zaznívají i z výzkumu D. Mandíkové z Matematicko - fyzikální fakulty Univerzity Karlovy z Prahy (Mandíková, D., 1993, 2006a, 2006b). Jako jeden z důležitých úkolů výuky fyziky na základní škole je zde zdůrazňována pomoc žákům lépe se orientovat ve světě, který je obklopuje. Jako příklad jsou voleny Newtonovy zákony, které mají klíčový význam pro pochopení jevů, s nimiž se každý člověk setkává již od dětství, a které souvisejí se vzájemným silovým působení těles a jeho účinky. Žáci nezískávají v průběhu života poznatky jen od učitelů, rodičů či z učebnic, ale hlavně tím, že od narození pozorují své okolí, manipulují v něm s věcmi, předvídají, co se bude dít, a okolí jim určitým způsobem odpovídá. Na základě toho si člověk vytváří řadu poznatků, které se snaží zobecňovat a spojovat do celků podle toho, jak se mu jeví jejich vzájemná souvislost. Než žák přijde do školy, která mu zprostředkovává vědecké poznatky, má už vytvořenou značnou zásobu subjektivních, prvotních neboli intuitivních představ o světě. Mnoho takových představ je spojeno právě s pohybem a silami (Mandíková, 2006a).
Výzkumy ukazují, že tyto představy jsou často v rozporu s vědeckými poznatky, jsou velmi trvalé a pro mnohé žáky tvoří vážnou bariéru pro pochopení Newtonových zákonů, které jsou základem porozumění nejen řady jevů kolem nás, předvídání nebo záměrného ovlivňování jejich průběhu, ale jsou základem i pro chápaní dalších fyzikálních témat. S mylnou představou, že pro každý pohyb (i rovnoměrný přímočarý) je nutné působení síly ve směru pohybu, se setkáme nejen u malých dětí předškolního věku, ale i u žáků či studentů, kteří prošli výukou fyziky v různém rozsahu, rovněž tak i u dospělých lidí (např. jaká výsledná síla působí na automobil pohybující se rovnoměrně přímočaře po silnici apod.) (Mandíková, 2006b).
Další výzkumy dětských pojetí vycházejí z konkurence žákových individuálních poznávacích procesů a vědecky objektivního obrazu světa kolem nás. To vyjadřuje např. idea tří světů B. Bolzana a K. Poppera (Hejný a Kuřina, 2000, 2001). První svět je světem věcí, nejpřístupnější našemu poznání, označovaný jako svět fyzikální. Druhý svět tvoří vědomé a nevědomé zkušenosti a představy člověka, je to svět lidského vědomí, myšlenkových pochodů a prožitků. Nazývá se duševní svět, je tvořen žitím člověka a je zkoumán především psychologií. Třetím světem jsou výtvory lidského ducha, jeho jádrem je řeč, věda a kultura. Tedy svět kultury s obsahy knihoven, archivů apod. Škola je potom místem průniku těchto tří světů a jde o zajištění jejich sbližování a prolínání. Podobnou koncepci prezentoval např. J. Lowe, kdy jsou dětská pojetí ovlivňována a formována třemi vlivy - tzv. primitivní (elementární) vědou (gut science), založenou na intuici a spontaneitě reakcí, laickou vědou (lay science), jejíž podstatou je každodenní používání jazyka a ovlivnění médii a školní vědou (school science), založenou na symbolickém a idealizovaném světě školní třídy. Ve všech těchto vlivech se výrazně promítají kulturní a společenské vlivy (užívání jazyka, metafor, působení médií) a dětská pojetí tedy variují podle charakteru těchto oblastí. Zejména vliv individuálních zkušeností (primitivní věda) zapřičiňuje značnou stabilitu dětských pojetí mnohých fenoménů. Výuka by tedy měla směřovat k postupnému sbližování "primitivní vědy" žáků se "školní vědou", což bez znalosti dětských pojetí je jen těžko možné (Škoda in Doulík, 2005).
Vliv kulturních aspektů na přírodovědnou výuku zkoumal např. W. W. Cobern z West Arizona State University (Cobern, 1993). Ve svých výzkumech upozorňoval na významnou roli externích vazeb přírodovědné výuky, tj. vazeb na její kulturní a sociální kontext. Z hlediska konstruktivistických přístupů je uvažován kromě personálního konstruktivismu tzv. kontextuální konstruktivismus. Ten nazývá Cobern, v porovnání s příměrem pro personální konstruktivismus jako anatomie a fyziologie konstruktivismu, ekologií konstruktivismu. Ve svých výzkumech navrhuje alternativní pohledy na zaužívaná schémata přírodovědné výuky. Např. pro logicko-strukturální kategorie "materialistický, redukcionistický, vysvětlující" jsou to alternativy "holistický, sociálně-humanistický, estetický, religiózní", pro jednoznačnou klasifikaci fenoménů "přírodní" navrhuje klasifikaci na jevy "přírodní, sociální a "super-přírodní", ve vztahové oblasti namísto "objektivní, neosobní" kategorie "subjektivní, osobní" apod. Podobnými výzkumy se zabývá také široký mezinárodní projekt ROSE (Relevance of Science Education). Významnost, důležitost, závažnost (relevance) přírodních věd a technologií (Science and Technology - S&T) a jejich výuky pro patnáctileté žáky, na níž je projekt ROSE zaměřen, lze lapidárně vyjádřit ve třech základních tezích: respektování kulturních odlišností a specifik v zájmech dívek a chlapců, podpora osobního a sociálního významu a posilování demokratického smýšlení a občanských principů u žáků. Výchozí teze projektu i dosud dosažené výsledky přímo podporují vyvracení mýtů o unifikovaném či univerzálním všeobecném přírodovědném vzdělávání pro primární a nižší sekundární stupeň školských systémů, o ignorování lokálních specifik, o malé vazbě etických a afektivních prvků na přírodovědné kurikulum, o rozdílech v motivaci pro přírodovědné vzdělávání u dívek a chlapců apod. (Schreinerová a Sj?berg, 2004, Bílek, 2005).
Projekt ROSE se podobně jako např. studie A. J. Gallarda z Florida State University zaměřuje i na problematiku přírodovědné výuky a multikulturního prostředí. Ve svých zkoumáních Gallard ukázal na nevýhody studentů z jiného než anglofonního prostředí i ve výuce přírodovědných předmětů. Vyžadované znalosti i způsoby jejich nabývání a vyjadřování neodpovídaly kulturním specifikám těchto studentů. To se projevovalo např. deprivacemi při kreslení vlastních zážitků s přírodovědnými fenomény, při prezentaci svých "jiných" zkušeností apod. Jak ukazují výsledky projektu ROSE, jde i o jinou motivaci pro výuku přírodních věd a technologií a motivaci k volbě povolání, budoucí orientace svého života. Na obr. 1, který zachycuje odpovědi na otázku, zda se chci stát vědcem, je zřejmá nízká motivace dětí z vyspělých zemí a naproti tomu silná motivace (možná nejen ekonomická) u dětí z rozvojového světa.

Z výsledků projektu ROSE

Obr. 1 Z výsledků projektu ROSE (1 - nesouhlasím, 4 - souhlasím) (Sjoberg, 2005)
Projekt: CZ.04.1.03/3.2.15.2/0263 Modulární přístup počáteční vzdělání učitelů přírodovědných předmětů pro střední školy
WWW stránky projektu: http://esfmoduly.upol.cz